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INSTRUMENTAL BROADENING CORRECTION IN SIZE EXCLUSION 
CHROMATOGRAPHY THROUGH FAST FOURIER TRANSFORM TECHNIQUES 

D. Alba and G.R. Meira* 
INTEC (CONICET and Univ. Nac. del Litoral) 

C.C. No 91 - 3000 Santa Fe 
Argentina 

ABSTRACT 

This paper shows the practicability of the use of the fast 
Fourier transform (FFT), with appropriate filtering in the fre- 
quency domain, as a means of deconvoluting Tung's integral formula 
(1). The method is limited to uniform instrumental spreading func- 
tions, but presents several important advantages: it is numeri- 
cally efficient, no assumptions about the shape of the spreading 
function are made, it eliminates the high-frequency measurement 
noise components from the corrected chromatogram without modifying 
the original data, and provides a means of physically interpreting 
the results. 

INTRODUCTION 

Most of the methods of correction for instrumental broadening 

in size exclusion chromatography (SEC) are based on the integral 

equation proposed by Tung (1): 

where v,y : both represent elution volume or elution time; 

(*) To whom correspondence should be sent. 
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2412 ALBA AND MEIRA 

f(v) : is the baseline-corrected chromatogram; 

g(v,y): is the unit mass (or normalized) detector response 

for a truly monodisperse polymer species with mean 

retention volume y; and 

w(v) : is the corrected chromatogram. 

There are two main problems associated to Eqn. (1). The first 

is related to the calibration, i.e. the determination of g(v,y) . 
The second deals with its solution, i.e. the way of calculating 

w(v). 

With respect to the calibration, and due to the impossibility 

of fractioning perfectly monodisperse polymers, several techniques 

have been proposed, e.g.: 

a) methods that utilize low polydispersity standards ( 2 ) ;  

b) methods that employ standards of known molecular weigth dis- 

tribution (3) ; 

c) the reverse-flow technique (4 ) ;  and 

d )  the recycle technique (5, 6 ) .  

In order to solve Eqn. ( l ) ,  two important simplifications 

have been generally considered: 

a) Assume the instrumental spreading function g(v,y) to be uni- 

form, i.e. independent of the mean retention volume y ( 1 ,  7, 

8, 9 ,  10, 11 ) .  With the exception of (7) ,  all these works adopt 

g(v) Gaussian symmetric, and some of them suggest the possibi- 

lity of correcting the chromatogram by sections, when the 

variation of g(v,y) with y is signfficant. 
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INSTRUMENTAL BROADENING CORRECTION 2413 

b) Assume g(v,y) Gaussian symmetric, with its variance dependent 

on elution volume (12, 13). 

Instrumental broadening correction with non-symmetrical, non- 

uniform calibration functions have been attempted in the early 

work by Hess and Kratz ( 2 ) ,  but as can be deduced from ( 1 4 ) ,  that 

approach generally leads to ill-conditioned numerical problems. 

Later on, (15) and (16) propose general methods for solving Eqn. 

( l ) ,  but from the evaluation by (12)  with regards to computing 

time, this last work suggests the convenience of simplifying the 

corrections methods in order to allow their implementation in 

relatively small computing systems. 

In what follows, the assumption of uniform spreading will be 

made in which case Eqn. (1) may be written: 

+m 
f(v) = / W(Y> g(v-y> dy 

-0 

Taking Fourier transformations of this convolution integral, one 

obtains 

where 

and so on. 

F(v) = W(v) G(w) 

j vv -I-= 

-m 2n 
F(w) = / f(v) exp [- -1 dv 

(3) 

( 4 )  

Pierce and Armonas (8) and Tung (9) were the first to con- 

sider Eqn. (3) with the hypothesis of g(v) Gaussian, and as a 

means of theoretically obtaining an expression for w(v) . 
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2414 ALBA AND MEIRA 

Vladimiroff (17) first suggested the possibility of obtaining w(v) 

through the FFT algorithms and a discrete equivalent of Eqn. ( 3 ) ;  

and a theoretical application of this idea was presented in (18). 

In this last work, a Gaussian spreading function was employed, and 

a synthetic two-peak distribution was utilized as the "corrected" 

chromatogram. The main problem exhibited was that the minimum tol- 

erable signal to noise ratio in the chromatogram for good results, 

was somewhere around the relatively high value of 1OOO:l; even 

though the spreading curve was completely noise-free. A filtering 

procedure consistent in setting to zero all values of F(w) smaller 

than 0,lX the maximum was used, and the possibility of processing 

chromatograms with signal to noise ratios greater than 200:l was 

suggested. In the present work, a simple but slightly different 

filtering procedure is proposed; which produces satisfactory re- 

sults even with experimental spreading curves and chromatograms 

with signal to noise ratios in the order of 20:l. The technique is 

particularly useful when the variation of g(v) with y is unim- 

portant and when g(v) is obtained through direct measurement. 

THEORY 

For numerical work, discrete versions of f(v) and g(v) 

must be considered. When the sampling interval Av is taken to be 

constant, then one can represent these functions by f(n) and g(n), 

where v - n Av and n = O,l,...,N-l. As should be apparent from 

what follows, it is convenient to consider the same total length N 

in both series, by adding the appropriate number of zeroes to the 

original data set. Furthermore, note that for the purposes of the 
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INSTRUMENTAL BROADENING CORRECTION 2415 

spreading correction, the sampling instant numbers n are displac- 

ed with respect to the original chromatogram sampling instants, 

which are proportional to elution volume or elution time. 

The discrete Fourier transform (DFT) of, e.g., f(n) will be: 

N- 1 2* 

n=O N 
F(m) = C f(n) exp [- j - m nl (5) 

where m = O,l,...,N-I is the discretized version of the fre- 

quency v , such that v = m Av with Av also constant. Note 

that F(0) is the cumulative height of f(n). Due to the exponen- 

tial term in ( 5 ) ,  F(m) is  periodic with period N. Furthermore, 

since f(n) is real, the modulus and phase (or the imaginary and 

real parts) of F(m) are all symmetric with respect to m = N/2.  

Thus, only a semi-period needs to be represented to provide the 

whole information. When antitransforming F(m) through: 

1 N-1 2* 

N m=O N 
f(n) = - C F(m) exp [j - m n] 

the reconstructed curve will also be periodic. 

A discrete counterpart of the convolution integral given by 

Eqn. (2) may be written: 

N- I 

k=O 
f(n) = C w(k) g(n-k) ( 7 )  

If w(n) and g(n) have N1 and N2 non-zero elements each, 

then the resulting function will have N3 = N1 + N2 - 1 non-zero 
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2416 ALBA AND MEIRA 

values. The d i s c r e t e  vers ion  of Eqn. ( 3 )  i s ,  on the  o ther  hand: 

F(m) = W(m) G(m) ( 8 )  

Note tha t  when so lv ing  t h i s  expression, a s u f f i c i e n t l y  long period 

N w i l l  have t o  be taken i n  order  t o  avoid the  overlapping of suc- 

cess ive  periods. 

The FFT algorithms, o r i g i n a l l y  described by Cooley and Tuckey 

(19) but p re sen t ly  a v a i l a b l e  i n  the  major computer languages and 

i n  p r a c t i c a l l y  every computer l i b r a r y ,  is a highly e f f i c i e n t  means 

of numerically so lv ing  Eqns. (5) and ( 6 ) .  When t h i s  algorithm is  

employed however, the  period N must a l s o  ve r i fy :  

N = Zk ( k  = l y 2 y . . . )  (9 )  

I n  p rac t i ce ,  a t  l e a s t  a value of k t h a t  w i l l  i n su re  the  condi- 

t ion  

N > N l + N p - l  

w i l l  have t o  be se l ec t ed .  

(10) 

Eqn. (8) can be conveniently used t o  obta in  f ( n )  as follows: 

1 )  c a l c u l a t e  F(m) and G(m) by f a s t  Fourier transforming f ( n )  

and d n > ;  

2) c a l c u l a t e  W(m) through: 

1 

G(m) 
W(m) = F(m) . - 

3)  ant i t ransform W(m) v i a  the  FFT algorithm. 
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INSTRUMENTAL BROADENING CORRECTION 2417 

Note the  following: 

a )  Due t o  p r a c t i c a l  reasons and fo r  better graphica l  i n t e rp re t a -  

t i o n  (see next s ec t ion ) ,  we have found preferab le  t o  perform 

the  product ind ica ted  i n  Eqn. (11) r a the r  than the  d i r e c t  quo- 

t i e n t .  

b) Numerical problems w i l l  appear when IG(m)l a t t a i n s  values c l o s e  

t o  zero. 

c) Since g(n) is normalized, then G(0) = 1 and therefore  

W(0) = F(0) ; i.e. the method does not modify the  chromatogram 

area.  

d )  Typical values f o r  k and N are 7 (or 8) and 128 (or  2561, 

respec t ive ly .  

e )  If g(n) i s  symmetric with its mean a t  n = 0, then /G(m) - 0 

f o r  a l l  m,  and /W(m) = (F(m) ; i.e., w(n) w i l l  not be t r a n s  

l a t e d  with respec t  t o  f ( n )  . A deformation s h i f t  w i l l  be pro- 

duced i f  g(n) is  asymmetric, and a pure t r a n s l a t i o n  w i l l  oc- 

cur  when its mean is  not placed a t  n = 0 . A p r a c t i c a l  way of 

dea l ing  with t h i s  last b i a s ,  is t o  center  the maximum of g(n) 

a t  n = 0. Due t o  the pe r iod ic i ty  of g(n) when the  DFT is  ap- 

p l i ed ,  the values of g(n)  f o r  n < 0 must be reproduced a t  

the  end of the f i r s t  period, however. Physically,  t h i s  implies 

a non-causal system with the  unit  mass impulse applied at  n=O. 

This procedure i s  cons i s t en t  with the f a c t  t ha t  the experimen- 

t a l  poin ts  of the c a l i b r a t i o n  curve log  M vs t obtained from 
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2418 ALBA AND MEIRA 

narrow-distributed standards are normally taken at the times of 

the maxima. 

f) Even though the FFT operates with the real and imaginary parts 

of the transformed functions, useful information can be ob- 

tained from the observation of the corresponding modulus and 

phase. 

APPLICATION 

I n  this work, a series 3-B Perkin-Elmer liquid chromatograph 

linked to a PDP 11/40 process computer was utilized. Programs for 

the automatic chromatographic data acquisition and data treatment 

were written in FORTRAN IV. In particular, only those related to 

the instrumental broadening correction will be here discussed. 

Three illustrative examples will be considered. Example 1 

represents the ideal case where noiseless g(n) and f(n) func- 

tions are available, and where IG(m)l does not attain values close 

to zero. In Example 2 noiseless chromatograms were also utilized, 

but a curve of IG(m)f with near-zero values is considered. Final- 

ly, Example 3 illustrates the use of the technique with noisy 

chromatograms and with near-zero values in IG(m)I . In what fol- 
lows, all functions considered are discrete, but shall be repre- 

sented by continuous lines joining the individual points. 

Example 1 

Consider the spreading curve g(n) and the uncorrected chro- 

matogram f(n), which are represented in Fig. 1. As previously 
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2420 ALBA AND MEIRA 

explained, it is convenient to consider the maximum of g(n) at 

n=O, with the left hand side of this curve at the end of the first 

period. Fig. 2 shows the magnitude and phase of all the trans- 

formed variables. The corrected chromatogram is also represented 

in Fig. 1. Note the following: 

a) F(m) and G(m) both act as low-pass filters, but a necessary 

physical prerequisite to perform the deconvolution is that the 

cut-off frequency of G(m) must be higher than that of F(m). 

b) The minimum of IG(m)l is well above the limit below which the 

measurement and truncation errors normally produce intolerable 

relative errors in 1/I~(m)l . 
c) The shape of 1/ IG(m)) indicates that 1/G (m) will act as a 

high-pass filter. This means that when multiplied by F(m) , 

W(m) will have enhanced high frequency components. 

d) The phase difference between /F(m) and /W(m) causes a distor- 

sion shift in the corrected chromatogram with respect to the 

original curve. 

Example 2 

Consider g(n) and f(n) of Fig. 3. In Fig. 4 ,  the amplitu- 

des of the transformed functions are represented. Notice that be- 

cause tG(m)l adopts very small values (with high relative errors) 

after m = 50, its inverse shows very high spurious peaks at 

around m = 100. Therefore, when multiplying IG(m)] by IF(m)l,lW(md 
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FIGURE 2: Example 1: modulus and phase of the transformed var ia -  
bles .  
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2424 ALBA AND MEIRA 

also results with relatively high values at those same frequen- 

cies; and consequently its antitransform will also be noisy (curve 

w(n) , Fig. 3) .  The procedure to smooth out this curve is simple; 

previous to antitransforming, and after a value of m where IW(m)l 

is sufficiently low (e.g. m, = 32) the amplitudes of W(m) are 

set to zero and up to the value m = N - m, - 1. The final result 

is function w'(n) of Fig. 3. The process described is equivalent 

to having compensated 1/ G(m) with an ideal low-pass filter of 

unit magnitude and cut-off frequency at m = 32, previous to its 

multiplication with F(m) . This compensated transfer function is 
shown in Fig. 4 in the scale of the left axis. Note that at the 

frequencies of interest, and due to the right hand side scaling, 

the magnitude of the uncompensated of I/G(m) is drawn over the 

horizontal axis. 

For practical applications, the above mentioned compensation 

procedure may be alternatively performed as follows: 

a) Eliminate the high-frequency components of I /  IG(m>l after a 

frequency where the magnitude of G(m) is very low and with 

high relative errors. This will reduce the computation time, by 

considering only a fraction of the total period. 

b) If w(n) is still noisy, then set to zero the high-frequency 

components of Iw(m>l after its first minimum, previous to its 

antitransformation. Note that this technique is possible be- 

cause the first near zero valued minimum of IW(m)l should ap- 

pear at lower frequencies than those of the main components of 
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INSTRUMENTAL BROADENING CORRECTION 2425 

G(m), and because the noise components of (w(m)l are, in gener- 

al, of much higher frequencies than those corresponding to the 

fractionation phenomena. If the first minimum of IW(m)l did not 

have a near-zero value, then oscillatory corrected curves could 

be produced. Fortunately, this is not normally the case. 

Example 3 

Consider now the observed chromatogram of Fig. 5 a), (obtain- 

ed by fractioning a PS standard of M, = 500 through an A-803 

Shodex column), which is already contaminated with high-frequency 

measurement noise. For correction, a typical asymmetric spreading 

function due to axial dispersion in capillaries, fittings, detec- 

tors, etc., was employed; which was obtained by injecting the same 

PS standard through the chromatograph fitted without the column. 

The effects of noisy chromatograms can be solved as in Example 2, 

by compensating 11 G(m) previous to its multiplication by F(m). 

The corrected smooth chromatogram w'(n) (in this case not correct- 

ed for axial dispersion in the column) is also represented in Fig. 

5 a). 

The selection of the appropriate cut-off frequency m, for 

W(m) is a trade-off between low values of m, that eliminate all 

of the high frequency measurement and calculation noise but also 

part of the useful information (thus producing smooth and distort- 

ed corrected chromatograms with low frequency oscillatory compo- 

nents), and high values of m, that minimize such distorsion but 

contaminate the corrected curve with zero-mean high frequency 
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FIGURE 5: Example 3: a) calibration curve, measured and corrected 
chromatograms with various filterings, b) measured and 
corrected chromatograms with excessively high baseline 
correction. 
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INSTRUMENTAL BROADENING CORRECTION 2427 

noise. In the example being considered, an appropriate correction 

(wl(n)) is produced when ~ ~ = 1 2  , excessive distorsion is ob- 
served with mcl=4 (curve ~"(n), Fig. 5a) , and poor filtering 
results if q3=50 (curve w"'(n), Fig. 5a). The amplitudes of the 

corresponding transformed functions are given in Fig. 6 .  

The leading and lagging edges of a chromatogram should rise 

slower than the corresponding spreading function. When this does 

not occur, then negative peaks are produced in the corrected 

curve. Fig. 5 b) is illustrative of this effect, due to a higher 

than appropriate selection of the chromatogram baseline. 

DISCUSSION 

The FFT technique is a powerful means of deconvoluting Tung's 

integral. Its main limitation is that the spreading curve g(v) 

must be considered uniform, but on the other hand it is non- 

iterative, the shape of g(v) can be arbitrary, and it is numeri- 

cally efficient (in our computer, the calculation time for N = 256 

was less than 3s). 

When comparing alternative deconvolution methods, possibly 

the most important aspect is the ability of each method to cope 

with (and explain the reasons for) oscillatory or noisy results. 

There are two principal reasons for these oscillations: the high 

frequency measurement noise that is normally present in the origi- 

nal data, and the calculation noise introduced by truncation 

errors. With regards to the measurement noise, many authors state 

that an appropriate smoothening of the observed chromatograms is 
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INSTRUMENTAL BROADENING CORRECTION 2 429 

necessary prior to the main calculations; and thus methods in- 

volving regression fits (1, 2),  seven point cubic filtering ( l l ) ,  

etc. have been proposed. In the work by Vladimiroff (18), a theo- 

retical expression for g(n) is assumed, and a preestimation of 

the signal to noise ratio is used to specify the cut-off frequency 

in the compensation of F(m) . As should be clear from example 3,  

both a too high or a too low value for the cut-off frequency may 

lead to completely erroneous results. 

In the present work, the smoothening and/or fitting of either 

g(n) or f(n) is not required because the problems originated by 

the measurement and calculation noise, can be simultaneously eli- 

minated in the last step, prior to antitransforming W(m). In this 

way, the deconvolution is performed with all of the original data, 

without loss of information. The fact that the low frequency com- 

ponents due to the fractionation phenomena are normally well apart 

from the high frequency counterparts due to measurement and/or 

calculation noise, justifies this filtering procedure. 

The program, which is available from the authors, has proven 

satisfactory even when the data acquisition and reduction is made 

fully automated, without operator intervention. 

Finally, another potential advantage of the technique refers 

to the possibility of convoluting the individual calibrations of 

columns, tubings, detectors, etc., to obtain the total spreading 

function in accord to the configuration employed. 
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